
Manipulating big data in R
for vegetation scientists

Viktoria Wagner

Version 1.3 - 23 November 2015

This script was first written as a companion to the course ’Manipulating big data in R for
vegetation scientists’, taught at the 58th Annual Symposium of the International Association
for Vegetation Science, in Brno, Czech Republic, 18-19 July 2015. Feel free to share this docu-
ment but please acknowledge this work by inserting the citation:

Wagner, Viktoria (2015): Manipulating big data in R for vegetation scientists Version 1.2. Un-
published course script. URL: http://viktoriawagner.weebly.com/. Accessed on date.

The preparation of this document was financed from the SoMoPro II programme. The research
leading to this result has acquired a financial grant from the People Programme (Marie Curie
Action) of the Seventh Framework Programme of EU according to the REA Grant Agreement
No. 291782. The research is further co-financed by the South-Moravian Region. The content of
this paper reflects only the author’s views; the European Union is not liable to any use that
may be made of the information contained therein.

Salza Palpurina kindly provided comments on an earlier draft of the manuscript.

Viktoria Wagner
Department of Botany and Zoology
Masaryk University
Kotlářská 2, CZ-611 37 Brno (Mailing address)
Kamenice 5 , CZ-625 00 Brno-Bohunice (Visiting address)
Czech Republic Phone: + 420 532 146 299, Fax: + 420 532 146 213
wagner@sci.muni.cz, http://viktoriawagner.weebly.com/

This file was created with LaTeX in TexShop. This script is continuously updated. If you
spot any errors, please contact the author.

http://viktoriawagner.weebly.com/
http://viktoriawagner.weebly.com/

Table of contents

1 Introduction 5
1.1 Notes on how to use this manual . 5
1.2 Background . 5
1.3 Packages . 6
1.4 Installation of packages . 7
1.5 Loading and detaching packages . 7

2 General tools 9
2.1 Time your R-processes . 9
2.2 Manage your R-memory . 10
2.3 Pipe functions . 11
2.4 Aliases . 13

3 Read data into R’s workspace 14
3.1 Overview . 14
3.2 Read delimited files . 15
3.3 Encoding . 16

4 Write data to file 18

5 Data inspection 20

6 String operations 22
6.1 Paste, split and check encoding . 22
6.2 Regular expressions . 23

7 Reshaping tables: Wide <–>Long 26
7.1 Wide format . 26
7.2 Long format . 27
7.3 Wide ->Long: gather() . 28
7.4 Long ->Wide: spread() . 28

8 Adding or deleting rows and columns 30
8.1 Adding columns: mutate() . 30
8.2 Adding rows: bind_rows() . 31
8.3 Deleting columns . 32
8.4 Deleting rows . 32

9 Manipulate columns and cell entries 33
9.1 Rename columns: mutate(), rename() . 33
9.2 Replace values: mutate(), mapvalues(), replace() 34
9.3 Update values by group . 35

10 Rearranging order of rows and columns 37

11 Select rows 39

3

12 Select columns 41

13 Combining datasets 42
13.1 Joining . 42

14 Data cleaning 47
14.1 Spot duplicate entries . 47
14.2 Spell-checking taxon names . 48

14.2.1 General spelling mistakes . 48
14.2.2 Spell-checking with reference lists . 49

15 Merging cover values 54

16 Data summary per group 57
16.1 Number of species per plot . 57

4

1 Introduction

1.1 Notes on how to use this manual
This manual was written as a companion to the course "Manipulating big data in R for ve-
getation scientists", held at the 58th Annual Symposium of the International Association for
Vegetation Science, in Brno, during 18-19 August 2015. The aim of the course was to familia-
rize participants with R tools for data manipulation, including reading, reformatting, merging,
summarizing, proofreading, and exporting data.

Although R can access data remotely, the course and the manual focus on R’s ability to im-
port and handle data in its workspace. Furthermore, although data.table is as suitable for
the manipulation of large tables as dplyr, the manual focuses largely on the dplyr package.
This is due to dplyr’s more intuitive syntax and its suitability for piping. Both points are an
advantage for R beginners.

The R code in most sections can be easily reproduced by copy-and-paste. In general, all ne-
cessary objects are created adhoc at the beginning of the section and necessary packages are
loaded and attached. The R code in the manual is written to increase readability. However, some
invisible formatting symbols (spaces, line breaks) could interfere with code execution when the
code is pasted into R. To ensure that the code works, copy it from this file and paste it into the
RStudio editor tab (or another editor). Do not paste it into the console. Then, submit the code
to the console, row by row. Do not try to submit an entire section as it might throw an error.

1.2 Background
Vegetation data store information on species composition, species abundance and related varia-
bles for a given area (’plot’). They provide indispensable insights for basic ecology, biogeography,
land management, conservation and ecological restoration. In the last decades, the amount of
electronically stored vegetation data has steadily increased. For example, Schaminée et al. (2009)
have estimated that data for 1.8 million plots are stored electronically in Europe. Consolidation
of databases has lead to large depositories, e.g. Vegbank: data on 76,000 plots, s-Plot: 1.17
million plots, and the European Vegetation Archive: 1 million plots (Chytrý et al in press).
The combination of electronically stored vegetation data and biological, environmental and ge-
ospatial databases offers exciting opportunities for inference to both science and application.
However, large vegetation data pose also novel challenges for data processing and preparation.
In particular, memory can become a limiting factor when processing large vegetation databases.
Data preparation steps must be carried out fast, with minimum usage of RAM. Furthermore,
large databases can contain spelling errors and typos which are difficult to detect manually.

R has become one of the most popular software tools for the analysis and visualization of
vegetation data. However, few vegetation scientists know that R is also a versatile tool for pro-
cessing large data. In the last years, several packages have been released that allow users to
manipulate data fast and efficiently. In particularly, the dplyr and data.table packages have
advanced R’s ability to manipulate large datasets. By using the function in these packages, ve-
getation scientists can perform some classic manipulations, including spotting duplicate entries
and joining vegetation data with biological and environmental data.

5

http://vegbank.org
http://www.idiv-biodiversity.de/de/sdiv/workshops/workshops-2013/splot
http://euroveg.org/eva-database

References

Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B. et al. (in press) European Vegetation Ar-
chive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science.

Schaminée, J.H. J., Hennekens, S., Chytrý, M. & Rodwell, J.S. 2009. Vegetation-plot data
and databases in Europe: an overview. Preslia 81: 173-185.

1.3 Packages

Table 1.1: Useful packages for manipulating large vegetation data, their leading author, year of
first release, depositories, and description. Numbers following package names indicate
versions used.

Package Author First
release

Deposit Description

data.table
1.9.5

M. Dowle 2006 CRAN,
github

Extension of data.frame

dplyr
0.4.2

H. Wickham 2014 CRAN,
github

A Grammar of data manipulation

foreign
0.8-65

R Core Team 1999 CRAN Read Data Stored by Minitab, S, SAS,
SPSS, Stata, Systat, ...

magrittr
1.5

S. Milton 2014 CRAN,
github

A forward-pipe operator for R

plyr
1.8.3

H. Wickham 2008 CRAN,
github

Tools for Splitting, Applying and Com-
bining Data

pryr
0.1.2

H. Wickham 2014 CRAN,
github

Tools for computing on the language.

readr
0.1.1

H. Wickham 2015 CRAN,
github

Read flat/tabular text files from disk

stringr
1.0.0

H. Wickham 2009 CRAN,
github

Simple, consistent wrappers for com-
mon string operations

stringi
0.5-5

M. Gagolewski 2014 GRAN,
github

Character String Processing Faciliti

taxize
0.6.2.9632

S. Chamberlain 2012 CRAN,
github

Taxonomic Information from Around
the Web

taxizesoap
0.1.0.99

S. Chamberlain 2014 github Extension of taxize for data retrieved
with the SOAP data transfer protocol

Taxonstand
1.7

L. Cayuela 2012 github Taxonomic Standardization of Plant
Species Names

tpl
0.1

G. Carvalho 2015(?) github R package (including shiny app) to
query The Plant List

vegdata
0.6.9

F. Jansen 2009 CRAN Access Vegetation Databases and Treat
Taxonomy

veggie
0.0.1

V. Wagner 2015 github Manipulation of Vegetation Data

Note that the data.table and taxize versions presented here are development versions on

6

github.

1.4 Installation of packages
(1) CRAN is the official repository for R packages (http://cran.r-project.org/). To
download and install a package from the CRAN online repository, run the install.packages()
function in R, specifying the package name within quotation marks and parentheses. Under
Windows and Mac, the package will be automatically downloaded and installed into your R
library. Suppose we want to install the dplyr package:

install.packages("dplyr")

Under Linux, you must specify the directory to the library folder, where your packages should
be installed, in the ’lib’-argument. In the example below, I am using the directory on my note-
book (admittedly a Mac):

lib.vec <- "/Library/Frameworks/R.framework/Versions/3.2/Resources/library"
install.packages("dplyr", lib = lib.vec)

You can locate the library folder on your machine with the function .libPaths().

(2) github is the second important online repository for R packages (https://github.
com/). It has several advantages for package development, like version control, collaborative
mode, and a bug-reporting system. Many packages which are found on CRAN have a develo-
pment version on github; but some are exclusively deposited on CRAN or github. To install a
package from github, you need first to install (once) and load the devtools package:

install.packages("devtools")
library(devtools)

Next, install your desired package from github by specifying the developer’s username and pac-
kage name, for example the taxize package from ROpenScience:

install_github("ropensci/taxize")

1.5 Loading and detaching packages
If you want to work with a certain package that is not part of R base, you need to load and
attach it into your session with the library() function. Below is an example for loading and
attaching the dplyr package:

library("dplyr")

Again, in Linux, you have to specify the library folder where the package is installed (I am
using again my directory as an example).

lib.loc.vec <- "/Library/Frameworks/R.framework/Versions/3.2/Resources/library"
library(dplyr, lib.loc = lib.loc.vec)

7

http://cran.r-project.org/
https://github.com/
https://github.com/
https://github.com/ropensci/taxize

Packages are automatically detached from your workspace once you shut R or RStudio down.
However, if you want to remove a package from your current workspace without closing the ap-
plication, use the detach() function. Below is an example for how to detach the dplyr package.

library(dplyr)
detach(package:dplyr)

Packages can be uninstalled with the remove.packages() command. You can specify the lib-
rary location in the ’lib’ argument. If that is missing, R will use the directory shown under
.libPaths().

remove.packages("data.table")

8

2 General tools

2.1 Time your R-processes
When processing large datasets, the time a function takes to execute a task can become a limi-
ting factor. Below are three options how to time R functions, based on an example using the
arbitrary function ’some.output <- rnorm(10^6)’:

OPTION 1:
ptm <- proc.time()
some.output <- rnorm(10^6)
diff1 <- proc.time() - ptm

diff1 # units in seconds
user system elapsed
0.105 0.001 0.106

OPTION 2:
system.time(

some.output <- rnorm(10^6)
)

units in seconds
user system elapsed
0.082 0.001 0.082

OPTION 3:
t1 <- Sys.time()
some.output <- rnorm(10^6)
t2 <- Sys.time()

difftime(t2,t1)
Time difference of 0.1059768 secs

Depending on the computer you are using, the calculated times might look different. Options
1 and 2 produce three numbers (’user’, ’system’, and ’elapsed’). To understand the first two
numbers, you need to know that R functions can be split up into processes that R is executing
and that the OS is executing on behalf of R (e.g. allocating additional memory for processes,
reading and writing files). However, these two numbers are usually of little interest. Instead,
it is the last number which is most useful: It gives the total amount of elapsed time (in seconds).

All three options are equally well suited to time R functions. Option 3 has a slight advan-
tage in that you can set the unit to be reported (’secs’, ’mins’, ’hours’, ’days’, ’weeks’). This is
particularly valuable if your R code runs for a long time and you don’t want to convert seconds
to higher units.

9

2.2 Manage your R-memory
Once objects are imported or created in R, they use up memory (RAM) for storage of data,
meta-data, and attributes. Memory usage can be easily monitored with the pryr package.

Memory usage by single objects can be inspected with object_size():
library(pryr)

some.output <- rnorm(10^6)

object_size(some.output)
8 MB

Memory usage by all objects is returned by mem_used() :

mem_used()

34.6 MB

Objects can share memory, if they are pointing to each other. For example, imagine we want
to create a new data frame df based on the vector above:

df <- data.frame(x = some.output)

object_size(df)
8 MB

object_size(df, some.output)
8 MB

mem_used()
34.8 MB

As you can see, both objects take the same amount of memory as each individual object because
some.output points to df.

Sometimes, we want to get rid of a large and unnecessary R-object to free up some space.
However, R will only free up memory for an object, if no other objects are pointing to it. Using
the example above, removing some.output with the function rm() will not free up space because
df is still pointing to it:

rm(some.output)

mem_used()
34.8 M

It is only after we also have removed df that the 8MB memory is released.
rm(df)

mem_used()
26.8 MB

In general, R is efficient with memory usage. If it needs more memory, it will check for deleted
objects and release memory through a process called garbage collection. But sometimes we
are impatient and want to release memory immediately. This can be enforced with the gc()
function (again: memory will be released only for those deleted objects to which no other objects

10

are pointing to).

Another important aspect for memory management is detecting hidden copy-making. Some
R-functions will duplicate an object without giving any notice. If you run them on large R-
objects, their hidden copy-making will use up precious memory. To make hidden copy-making
visible, use the tracemem() function in the base package.

For example, if you have an object df and you call ’tracemem(df)’, your df object gets a
number. From now on, hidden copy-making in a function is exposed and the respective number
for the object is traced. Below is an example, in which we substitute a value within a data
frame df (cell in row 1 and column 2) by ’NA’. As we have wrapped the tracemem() function
around our df object before, we can see that the replacement function copies df silently in the
background.

df <- data.frame(x = rnorm(10), y = rnorm(10))
tracemem(df)
[1] "<0x7f95fb6c2e60>"

df[1,2] <- NA
tracemem[0x7f95fb6c2e60 -> 0x7f95fb6a06b0]:
tracemem[0x7f95fb6a06b0 -> 0x7f95fb6a0838]: [<-.data.frame [<-
tracemem[0x7f95fb6a0838 -> 0x7f95fb6a0a30]: [<-.data.frame [<-

The specific example above is trivial and will take only a fraction of a second. However, with
complex functions and large data frames, copy making use up valuable time.

A strength of the packages dplyr and data.table is that most of their functions avoid copy-
making.

2.3 Pipe functions
Piping is a relatively recent addition to R, introduced in the magrittr package. It refers to a
syntax that chains individual functions with a pipe symbol (e.g. %>%, %<>%). By using
pipes, you can build more comprehensive and shorter R syntax.

Piping is an excellent companion to dplyr. Here an example with the iris dataset, in which
sepal length (column ’Sepal.length’) is listed for three Iris species (’Species’).

First, let’s look at a set of data manipulation functions that we will carry out in the clas-
sic, NON-pipe way:

We will construct a data frame in which we calculate the mean sepal length for each spe-
cies. Next, we will sort the resulting table in descending order:

temp.df <- group_by(iris, Species) # group species
temp.df.1 <- summarize(temp.df,

mean.length = mean(Sepal.Length)) # calculate mean
temp.df.2 <- arrange(temp.df.1, desc(mean.length)) # sort table
temp.df.2

Source: local data frame [3 x 2]

Species mean.length
1 virginica 6.588

11

2 versicolor 5.936
3 setosa 5.006

Note how cumbersome the syntax above is: We’ve created three new objects, are reusing the
data frame name of the previous call and most of all, our syntax is difficult to read. With piping,
we can chain all steps into one step, without creating new redundant objects in each line and
reusing the previous data frame name.

Here is how we proceed in the PIPE-way:

We start the chain of functions by supplying the original data frame name, first, and then
sequence all necessary functions with the forward pipe operator %>%:

library(dplyr)
library(magrittr)

iris %>% # table name
group_by(Species) %>% # group by species
summarize(x = mean(Sepal.Length))%>% # calculate mean
arrange(desc(x)) # sort table

Source: local data frame [3 x 2]

Species mean.length
1 virginica 6.588
2 versicolor 5.936
3 setosa 5.006

Note that I have stretched the functions above across several lines but you can place the en-
tire chain into one single line. The %>% symbol indicates that the previously supplied object
should be used as an input for the next function. So, there is no need to specify the data frame
name iris in the following function. For example, ’iris %>% group_by(Species)’ is the same as
’group_by(iris, Species)’.

In the example above, we’ve used the forward pipe (%>%) which yields a new table and
leaves the original table unmodified. By comparison, the compound assignment pipe ope-
rator %<>% replaces the original data frame with a new object (as created in subsequent
steps). This is convenient when we want to rename columns or replace values in a large data
frame:

colnames(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

Let’s rename column ’Sepal.Length’ to ’L’ by using %<>%:

iris %<>% rename(L = Sepal.Length)

colnames(iris)
[1] "L" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

The forward pipe (%>%) is currently implemented in magrittr and dplyr but the compound
assignment pipe is included in magrittr, only. Piping can be more versatile than shown here.
For instance, it can be used with vectors and lists, and there are additional pipes. Check out
the documentation in the magrittr package. The recently released pipeR packages offers even

12

a wider range of piping solutions.

2.4 Aliases
The magrittr package offers additional tools that can be used in conjunction with pipes. For
example, we can use the use_series() function to extract a vector from a data frame.

Extract a column as a vector
Show only first 10 hits
iris %>%
use_series(Petal.Length) %>%
head()
[1] 1.4 1.4 1.3 1.5 1.4 1.7

How many distinct values does the vector have?
iris %>%
use_series(Petal.Length) %>%
n_distinct()
[1] 43

Show maximum value for a vector
iris %>%
use_series(Petal.Length) %>%
max()
[1] 6.9

To see the entire list of aliases, type for example:

?use_series

13

3 Read data into R’s workspace

3.1 Overview
Vegetation data can be stored in a wide array of different formats, such as relational databases
(e.g. MS Access), markup language (e.g. XML) or flat files (e.g. .txt). R is able to open all
common formats and import file content in its workspace (Table 3.1).

Table 3.1: Common file formats for storage of vegetation data, corresponding R packages and
functions for data import

Type Ending R package Function Comment
Delimited .txt base read.table()

.txt, .csv base read.csv(),
read.csv2()

.txt readr read_delim() for large files

.txt, .csv readr read_csv(),
read_csv2()

for large files

data.table fread() for large files
Excel .xls,

.xlsx
XLConnect loadWorkbook() One of several packages

that can import Excel fi-
les

XML .xml XML xmlParse() for general xml-import,
incl. Veg-X (Wiser et al.
2011)

vegdata ESveg.obs(db, ...) import of ESVeg stan-
dard (species data)

vegdata ESveg.site(db, ...) header data
dBase .dbf foreign read.dbf()
Access .mdb RODBC odbcConnectAccess()

+ sqlFetch()
SQL .sql RODBC odbcConnectAccess()

+ sqlFetch()

R is also able to access databases remotely, without importing them into its workspace. This
is most convenient for databases that are too large to fit into R’s memory. The course will not
deal with this topic but check out the dplyr package for remote access to SQL databases.

14

3.2 Read delimited files
Delimited files are the most common type for data storage because they can be easily shared
among different operating systems and accessed with different software. Given they can fit into
R’s memory, large delimited files can be imported in three different ways, using

(1) the read.table() function in base (with custom settings),
(2) the read_delim() function in the readr package, and
(3) the fread() function in the data.table package.

The first two functions will convert the content into a data frame, whereas the fread() function
can create a data table (an enhanced data frame, default) or data frame.

The read.table() function (and similar functions in the base package) is the classic option for
importing delimited files but it suffers from a long syntax.
read_delim() does not only have a very slim syntax but can also display a progress bar.
fread() is the fastest (see code below) and most versatile option. For example, it is able to
import only a subset of columns. Furthermore, not only can it display a progress bar, it can
also be ’chatty’ (report progress status and timings of individual steps).

In the example below, I compared the speed with which the three option import a 2.14GB
vegetation data file. The file consists of 5,665,866 rows and 50 columns (file not reproduced
here):

setwd(/Users/Data/) # my custom working directory

(1) read.table():
do not run

ptm <- proc.time()
data <- read.table("mydata.txt", # File name

nrows = 5665866, # Number of rows
colClasses = "character", # Defines column type
sep = "\t", # Separator of columns (here: tab)
header = T, # header (column names) is present
na.strings = NA, # Abbreviation for missing values
stringsAsFactors = F) # Don’t convert text strings to factors

diff1 <- proc.time() - ptm

(2) read_delim() in the readr package:

do not run

library(readr)

ptm <- proc.time()
data <- read_delim("data.txt", # File name

column type:
col_types = paste(rep("c",50), collapse = ""),
delim="\t", # type of delimiter
progress=T)

diff2 <- proc.time() - ptm

15

(3) fread() in the data.table package:
do not run

library(data.table)

ptm <- proc.time()
data <- fread("data.txt", # File name

colClasses = rep("character",50), # column type
sep = "\t", # type of delimiter
nrows = 5650247,
header = T,
stringsAsFactors = F,
showProgress = T)

diff3 <- proc.time() - ptm

Speed comparison (time in s):

data.frame(Option = c("read.table()", "read_delim()", "fread()"),
time = round(c(diff1[3], diff2[3], diff3[3]),2))

Option time
1 read.table() 311.13
2 read_delim() 179.32
3 fread() 61.37

3.3 Encoding
Characters in vegetation data can include simple ASCII-characters (e.g. A, p, T, 1) or non-
ASCII special characters (e.g. ’ö’, ’ñ’, ’á’ or Chinese characters). The latter is often found in
columns that store locality information (e.g. ’Moravský Kraj‘) or author names in taxon strings
(e.g. "Luzula hitchcockii Hämet-Ahti").

To what extent R will import and display non-ASCII characters correctly (i.e. as in the original
file), depends on three conditions:

(1) The encoding of your file. If your delimited file includes non-ASCII characters and
you want them to be displayed correctly in the R console (and the tables and figures you are
generating with R), the file should be in UTF-8 format. It is also important that characters in
the original file are not corrupted. Corruption could have happened e.g. after somebody opened
a file with non-ASCII characters in a software that does automatic character conversion and
then saved it. In this case, there is not much you can do except to fix the corrupted characters
and save the file under a UTF-8 format in text processing software (e.g. in Text Wrangler or
Sublime Text).

(2) The encoding that your operating system is using. During installation, R will usually
adopt the encoding of your operating system. Check out the encoding system that R is using
on your machine with this function (in my case, R is using UTF-8):

Sys.setlocale()
[1] "en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8"

In general, Linux and Mac operating systems employ UTF-8 encoding. This makes the import
and display of non-ASCII characters in R comparatively easy (you might have to set the right

16

encoding also in the import functions, see point 3). By comparison, encoding on Windows can
vary and cause problems when non-ASCII characters are imported. For example, if you have
non-Chinese encoding on Windows, you might have trouble displaying Chinese characters in R.
Note that the developers of RStudio (versions > 0.93) have announced that their software can
display non-ASCII characters correctly (See https://support.rstudio.com/hc/en-us/
articles/200532197-Character-Encoding).

(3) The encoding function that you are using to import a file. Functions read.table()
and fread() (in data.table version > 1.9.5) can read and preserve non-ASCII characters if
you specify a UTF-8 encoding in arguments ’encoding’ and ’fileEncoding’. However, you need
to know whether your file is encoded in UTF-8 or not. But how to tell what encoding
is used in your file? Assuming that your file includes uncorrupted non-ASCII characters (see
point 1), the safest option is to open the file in Text Wrangler, Sublime Text (or another text-
processing software) and save it again with the encoding set to ’UTF-8’. Then, you can proceed
in R to import the file by setting the encoding to UTF-8:

Option 1: read.table()
data <- read.table("mydata.txt", # File name

nrows = 5665866,
colClasses = "character",
header = T,
na.strings = NA,
stringsAsFactors = F,
encoding="UTF-8",
fileEncoding="UTF-8")

Option 2: fread()
data <- fread("data.txt",

colClasses = rep("character",50),
sep = "\t",
nrows = 5650247,
header = T,
stringsAsFactors = F,
showProgress = T,
encoding="UTF-8")

Note that when the manual was written, the ’encoding’ argument in data.table was just
released (development version 1.9.5 on github). Some changes might have occurred since then.

17

https://support.rstudio.com/hc/en-us/articles/200532197-Character-Encoding
https://support.rstudio.com/hc/en-us/articles/200532197-Character-Encoding

4 Write data to file
Writing large amounts of data to files can be time-consuming. Unfortunately, neither data.table
nor dplyr currently offer functions for rapid data export. In the case of delimited files, use the
base function write.table(). Some users have reported a gain in speed by converting a data
frame (made up of many character columns) to a matrix first, and then writing the data to
the file batches. Last but not least, you can save your table as an .RDS object with the base
function writeRDS() which uses up less disk space (but can be opened only with R). Let’s
compare the three options. We will use as an example a file with 5,665,866 rows and 50 columns
(file not reproduced here):

(1) write.table() function:
do not run

ptm <- proc.time()
write.table(data,

"data.txt",
sep = "\t",

row.names=F,
quote = F)

diff4 <- proc.time() - ptm

(2) write.table() function (in batches):

do not run

First, convert your table to a matrix
First batch (50% of rows)

nr <- nrow(data)
ptm <- proc.time()
data.m <- as.matrix(data)
write.table(data.m[1:(nr/2),],

"data.txt",
row.names = F,
sep = "\t",
quote = F)

second batch
write.table(data.m[((nr/2)+1):nr,],

"data.txt",
append = T, # Append batch to existing file
row.names = F,
col.names = F,
sep = "\t",
quote = F)

diff5 <- proc.time() - ptm

(3) write.rds() function
do not run

ptm <- proc.time()
saveRDS(data, "data.rds")
diff6 <- proc.time() - ptm

18

Speed comparison (time in s):

data.frame(Option = c("write.table()", "as.matrix() + write.table()", "writeRDS"),
time = round(c(diff4[3], diff5[3], diff6[3]),2))

Option time
1 write.table() 90.82
2 as.matrix() + write.table() 115.68
3 writeRDS 128.46

Clearly, the fastest choice is the classic write.table().

19

5 Data inspection

Data inspection is straightforward when your are dealing with a small table. Type the name of
the data frame and it will be printed in the console.

EXAMPLE
data frame with 4 columns and 7 rows (+header)

spec.vec <- c("Fagus sylvatica", "Acer platanoides",
"Melica uniflora", "Hordelymus europaeus",
"Lonicera periclymenum", "Lilium martagon",
"Lythyrus vernus")

veg.df <- data.frame(plot =c(rep("P1",7)),
spec = spec.vec,
layer=c("tr", "tr", rep("h", 5)),
cov=c(60,20,5,5,5,1,5))

veg.df

plot spec layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 20
3 P1 Melica uniflora h 5
4 P1 Hordelymus europaeus h 5
5 P1 Lonicera periclymenum h 5
6 P1 Lilium martagon h 1
7 P1 Lythyrus vernus h 5

However, R has a limit for how many rows and columns it will display. In case the number of
rows in the table exceeds its default limits, it will truncate the printed table.

Beware of submitting just the name of a very large table: R might crash!

Instead, make a habit of transforming your large data frame to a tbl-data frame, as soon
as you create it. This object is identical to a data frame but differs in its print output to the
console: only its head and tail will be printed. Consider this (comparatively small) data frame
df consisting of 10 million rows and two columns:

df <- data.frame(x = rnorm(10^7), y = rnorm(10^7))

library(dplyr)

df <- tbl_df(df)
df

Source: local data frame [10,000,000 x 2]

x y
1 0.1929042 -0.59996971
2 -0.7101549 0.43006413
3 -0.1864493 1.43324735
4 1.1486379 -0.89638429
5 -0.4540759 -2.10334832
6 0.5059702 -0.82252682

20

7 -0.3152344 0.44769060
8 -0.3619789 0.48927809
9 -0.4754735 1.37828149
10 -0.4859998 0.02161131
..

In case of a tbl-data frame, R will print out only as many rows and columns as can fit into your
screen (in this case: 10 rows and 2 columns).

Anther option is to transform your data.frame to a data table with the setDT(as.list())
function in the data.table package. These objects are also displayed in a compact way but
unlike with a tbl-data frame, all columns are shown:

df <- data.frame(x = rnorm(10^7), y = rnorm(10^7))

library(data.table)

df.dt <- setDT(as.list(df))

df.dt
x y

1: 0.1597989 0.5663999
2: -1.4442060 0.4893772
3: 0.7479281 -0.5184879
4: -0.6818427 1.4947946
5: -1.6210944 1.2190902

9999996: -0.7628983 0.5805407
9999997: 0.7230575 -0.7793770
9999998: 0.9685876 -0.1737581
9999999: 0.9798970 -0.6954244

10000000: 1.4770516 -0.7473812

The dimensions of your table can be checked with the following functions:

dim(df) # Dimensions
[1] 10000000 2

nrow(df) # No of rows
[1] 10000000

ncol(df) # No of columns
[1] 2

21

6 String operations

6.1 Paste, split and check encoding
String operations are indispensable little helper functions that can make manipulation of large
vegetation data easier. Unlike many other functions that are introduced in this manual, they
do not manipulate entire tables but vectors. One of the most simplest commands is paste(),
which joins two or more single strings into a more complex string:

paste("Fagus", "sylvatica", sep=" ")
[1] "Fagus sylvatica"

In the separator (’sep’) argument, we specified that a single space should separate the two
strings. The function can also be applied to two or more vectors:

genus <- c("Fagus", "Oxalis", "Equisetum")
spec <- c("sylvatica", "acetosella", "hyemale")

taxon <- paste(genus, spec, sep=" ")
taxon
[1] "Fagus sylvatica" "Oxalis acetosella" "Equisetum hyemale"

The stringr package offers several functions for string operations. One of the most important
ones is the str_split() function. Below we use it to split the newly created vector by a space
(’pattern’ argument) and thus, separate taxon names back into a genus name and epithet:

library(stringr)

str_split(taxon, pattern=" ")
[[1]]
[1] "Fagus" "sylvatica"

[[2]]
[1] "Oxalis" "acetosella"

[[3]]
[1] "Equisetum" "hyemale"

The resulting object is a list. Below, we separate the list elements into two vectors, one for the
genus and one for the epithet name:

sapply(str_split(taxon, pattern=" "), function(x) x[1])
[1] "Fagus" "Oxalis" "Equisetum"

sapply(str_split(taxon, pattern=" "), function(x) x[2])
[1] "sylvatica" "acetosella" "hyemale"

Another useful function in the stringr package is str_trim() which removes redundant white
spaces at the beginning and/or end of a string (specify the trim side with the ’side’ argument).
This is particularly helpful for proofreading taxonomic (see Chapter 15.2) or regional names.

vec <- c("Veronica ", "Pyrola ")
str_trim(vec, side = "both")
[1] "Veronica" "Pyrola"

22

Paste in combination with the str_sub() function can be used to reorder elements within a
string. For example, we can reorder the order of days, months and years in a string for dates.
In this case, str_sub() will extract elements at the specified positions (first number: start of
position, last number: end of position).

dates <- c("07.05.1985", "23.04.1999")

str_sub(dates, 1,2) # days
[1] "07" "23"

str_sub(dates, 4,5) # months
[1] "05" "04"

str_sub(dates, 7,10) # months
[1] "1985" "1999"

Now reorder strings by using paste()
paste(str_sub(dates, 7,10),str_sub(dates, 4,5),str_sub(dates, 1,2), sep=".")

[1] "1985.05.07" "1999.04.23"

The encoding of a string can be checked with the stri_enc_mark() function in the stringi
package:

library(stringi)
non <- c("Jihomoravský kraj", "Brno")

stri_enc_mark(non)
[1] "UTF-8" "ASCII"

6.2 Regular expressions
Regular expressions (’regex’) are a set of characters used to match (and replace) patterns.
They are implemented in various languages (e.g. R, Perl, Java, Ruby) and software (e.g. Text
Wrangler, Sublime Text). Learning regular expressions can be a steep learning curve but it is
worthwhile because they can spare you dull programming and paste + copy operations.

Table 6.1: Overview of common regular expressions. See http://www.cheatography.
com/davechild/cheat-sheets/regular-expressions/ for a more compre-
hensive overview.

Regular
expression

Meaning

\s White space
\S Not white space
\w Text (word) character
\W Not text (word) character
\d Digit
\D Not digit
\n Line ending
\t Tab delimiter
$ End of string or line

23

http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

Several functions in R base and add-on packages use regular expressions. They usually support
two types of expressions: the extended (default) and the more elaborate Perl-style regular ex-
pressions. Be aware that in R, regular expressions need an additional backslash at the beginning.

First, let’s see how we can use regular expressions in the grepl() function to match certain
string elements within a vector of taxon names:

vec <- c("Arundo donax",
"Typha spec1",
"Typha pallida",
"Achillea millefolium agg.",
"Lotus corniculatus agg.",
"Hieracium agg. heldreichii")

Match names with "Typha"
No regular expression used, yet)
vec[grepl("Typha", vec)]
[1] "Typha spec1" "Typha pallida"

Match names that include a digit
vec[grepl("\\d", vec)]
[1] "Typha spec1"

Match names where first character is an "A"
vec[grepl("^\\A", vec)]
[1] "Arundo donax" "Achillea millefolium agg."

Match only names where "agg." is at the end
vec[grepl("*agg.$", vec)]
[1] "Achillea millefolium agg." "Lotus corniculatus agg."

Match names where agg. is in the middle (i.e. preceded and followed by a space)
vec[grepl("\\sagg.\\s", vec)]
[1] "Hieracium agg. heldreichii"

We can use lookarounds to match patterns based on the condition of following (lookaheads)
or preceding (lookbehinds) strings elements. Note that you have to switch to Perl-style regular
expression in the following functions (argument ’perl = T’):

Positive lookahead
Get string elements with "Typha" that are followed by "pallida"
vec[grepl("Typha\\s(?=pallida)",vec, perl=T)]
[1] "Typha pallida"

Negative lookahead
Get string elements with "Typha" that are NOT followed by "spec1"
vec[grepl("Typha\\s(?!spec1)",vec, perl=T)]
[1] "Typha pallida"

Lookbehinds
Get strings with "agg." that are preceded by "Hieracium"
vec[grepl("(?<=Hieracium)\\sagg.", vec, perl=T)]
[1] "Hieracium agg. heldreichii"

Get strings with "agg." that are NOT preceded by "Hieracium"
vec[grepl("(?<!Hieracium)\\sagg.", vec, perl=T)]
[1] "Achillea millefolium agg." "Lotus corniculatus agg."

Using the same logic as above, you can also do inverse matching, where names that include
a certain string element are excluded. For example, you could match all taxon names that do

24

NOT include "agg."in their strings:

vec[grepl("^((?!agg.).)*$", vec, perl=T)]
[1] "Arundo donax" "Typha spec1" "Typha pallida"

The gsub() function can match and replace certain string elements. In the example below, we
match a double space and replace it by a single space (see "Lotus corniculatus agg."). Note
that the expression "\\s{2,}"matches ’two or more white spaces’.

gsub("\\s{2,}", " ", vec)
[1] "Arundo donax" "Typha spec1" "Typha pallida"
"Achillea millefolium agg." "Lotus corniculatus agg." "Hieracium agg. heldreichii"

25

7 Reshaping tables: Wide <–>Long

Vegetation tables often include species x plot data, which can be displayed in a wide or long
format. The two formats can be converted through reshaping functions gather() and spread()
in the tidyr package.

7.1 Wide format
In the wide format, the vegetation table lists plot IDs as a column, with one row for each
plot. Abundances are listed across columns, with one column for each species (columns ’spec1’
to ’spec4’). Header variables are listed as columns, again with every row representing a plot
(latitude: ’lat’ and longitude: ’long’). This format is suitable for plot-level operations, e.g. mul-
tivariate analysis in the vegan package.

lat.vec.w <- c(-25.628, 22.504, -3.515,
1.400, -11.661, 16.936,
-2.787, -11.767, 10.209,
-5.747)

long.vec.w <- c(-27.501, -21.998, -48.671,
17.081, 7.165, -0.839, -6.539, -0.644,
17.802, NA)

wide.data <- data.frame(plot = c(paste("P", 1:10, sep="")),
spec1 = c(20,5,20,1,0,0,0,20,5,10),
spec2 = c(0,0,40,1,0,0,0,5,0,5),
spec3 = c(10,50,0,5,10,0,1,0,5,10),
spec4 = c(5,0,10,10,30,5,0,0,50,30),
lat = lat.vec.w,
long = long.vec.w)

wide.data

plot spec1 spec2 spec3 spec4 lat long
P1 20 0 10 5 -25.628 -27.501
P2 5 0 50 0 22.504 -21.998
P3 20 40 0 10 -3.515 -48.671
P4 1 1 5 10 1.400 17.081
P5 0 0 10 30 -11.661 7.165
P6 0 0 0 5 16.936 -0.839
P7 0 0 1 0 -2.787 -6.539
P8 20 5 0 0 -11.767 -0.644
P9 5 0 5 50 10.209 17.802

P10 10 5 10 30 -5.747 NA

26

7.2 Long format
In the long format, each row in the vegetation table corresponds to a plot x species observation,
with species names and abundances gathered into two columns (note: only first ten rows are
displayed, above). Hence, plot ID and other plot-level data (e.g. latitude and longitude for a
plot) are listed repeatedly within a plot and are duplicated across the table. This format is the
default format for many R operations. It offers the advantage that species names, layers, and
abundance values can be more easily manipulated.

plot.vec <- c("P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8",
"P9", "P10", "P1", "P2", "P3", "P4", "P5", "P6",
"P7", "P8", "P9", "P10", "P1", "P2", "P3", " P4",
"P5", "P6", "P7", "P8", "P9", "P10", "P1", "P2",
"P3", "P4", "P5", "P6", "P7", "P8", "P9", "P10")

lat.vec <-c(-25.628, 22.504, -3.515, 1.400, -11.661, 16.936, -2.787, -11.767,
10.209, -5.747, -25.628, 22.504, -3.515, 1.400, -11.661, 16.936,
-2.787, 2-11.767, 10.209, -5.747, -25.628, 22.504, -3.515, 1.400,
-11.661, 16.936, -2.787, -11.767, 10.209, -5.747, -25.628, 22.504,
-3.515, 1.400, -11.661, 16.936, -2.787, -11.767, 10.209, -5.747)

long.vec <- c(27.501, -21.998, -48.671, 17.081, 7.165, -0.839, -6.539, -0.644,
17.802, NA, -27.501, -21.998, -48.671, 17.081, 7.165, -0.839, -6.539,
-0.644, 17.802, NA, -27.501, -21.998, -48.671, 17.081, 7.165, -0.839,
-6.539, -0.644, 17.802, NA, -27.501, -21.998, -48.671, 17.081, 7.165,
-0.839, -6.539, -0.644, 17.802, NA)

spec.vec <- c("spec1", "spec1", "spec1", "spec1", "spec1", "spec1", "spec1",
"spec1", "spec1", "spec1", "spec2", "spec2", "spec2", "spec2",
"spec2", "spec2", "spec2", "spec2", "spec2", "spec2", "spec3",
"spec3", "spec3", "spec3", "spec3", "spec3", "spec3", "spec3",
"spec3", "spec3", "spec4", "spec4", "spec4", "spec4", "spec4",
"spec4", "spec4", "spec4", "spec4", "spec4")

abund.vec <-c(20, 5, 20, 1, 0, 0, 0, 20, 5, 10, 0, 0, 40, 1, 0, 0, 0, 5, 0, 5,
10, 50, 0, 5, 10, 0, 1, 0, 5, 10, 5, 0, 10, 10, 30, 5, 0, 0,
50, 30)

long.data <- data.frame(plot = plot.vec,
lat = lat.vec,
long = long.vec,
spec = spec.vec,
abund = abund.vec)

head(long.data)

plot lat long spec abund
1 P1 -25.628 27.501 spec1 20
2 P2 22.504 -21.998 spec1 5
3 P3 -3.515 -48.671 spec1 20
4 P4 1.400 17.081 spec1 1
5 P5 -11.661 7.165 spec1 0
6 P6 16.936 -0.839 spec1 0

27

7.3 Wide ->Long: gather()
The transformation of a wide to a long format is known as gathering or melting data. The
gather() operation converts the wide format to the long format. In the example below, we use
this function to combine several species-abundance columns into just two columns, one contai-
ning the species names (’species’) and one containing their abundances values (’abund’):

library(tidyr)
long.data <- gather(wide.data,

spec, # new name of key variable
abund, # new name of abundance variable
spec1:spec4, # name of columns to be gathered
convert = T) # automatic conversion to modes

Display first ten rows of the resulting table:

head(long.data, 10)

plot lat long spec abund
1 P1 -25.628 -27.501 spec1 20
2 P2 22.504 -21.998 spec1 5
3 P3 -3.515 -48.671 spec1 20
4 P4 1.400 17.081 spec1 1
5 P5 -11.661 7.165 spec1 0
6 P6 16.936 -0.839 spec1 0
7 P7 -2.787 -6.539 spec1 0
8 P8 -11.767 -0.644 spec1 20
9 P9 10.209 17.802 spec1 5
10 P10 -5.747 NA spec1 10

7.4 Long ->Wide: spread()
We can reshape a table from the wide to the long format by using spread(). The spread
operation is also known as data casting.

library(tidyr)
spread(long.data,

spec, # key variable (will form column names)
abund) # values for key variables (will form cell content)

plot lat long spec1 spec2 spec3 spec4
1 P1 -25.628 -27.501 20 NA 10 5
2 P10 -5.747 NA 10 5 10 30
3 P2 22.504 -21.998 5 NA 50 NA
4 P3 -3.515 -48.671 20 40 NA 10
5 P4 1.400 17.081 1 1 5 10
6 P5 -11.661 7.165 NA NA 10 30
7 P6 16.936 -0.839 NA NA NA 5
8 P7 -2.787 -6.539 NA NA 1 NA
9 P8 -11.767 -0.644 20 5 NA NA
10 P9 10.209 17.802 5 NA 5 50

spread() works similar to gather() in that a key variable and values are specified but this
time, they are spread out into a wide dimension.

As some species occur in specific plots but are missing in others, we obtain missing values

28

(’NA’) for some cells in the species columns. To convert the ’NA’s to zeroes, we need a little
detour and define a function.

First define a function that will carry out the replacement:
repl.NA <- function(x) ifelse(is.na(x), 0,x)

In ifelse(), the first argument (’is.na(x)’) checks whether a value is NA, and returns TRUE if
it is NA, or FALSE otherwise. The second and third arguments specify what should be written
if the test returns TRUE or FALSE.

Now, we will apply the specified function to each species-abundance column by using dplyr’s
mutate_each() function. When custom functions are used insidemutate_each(), they must
be wrapped in funs(). Columns that should not be included in the calculation can be excluded
with the minus sign (here: ’plot’, ’long’, ’lat’).

wide.data %>%
mutate_each(funs(repl.NA), -plot, -long, -lat)%>%
head()

plot lat long spec1 spec2 spec3 spec4
1 P4 1.400 17.081 0 0 5 0
2 P1 -25.628 -27.501 0 0 10 5
3 P1 -25.628 27.501 20 0 0 0
4 P10 -5.747 NA 10 5 10 30
5 P2 22.504 -21.998 5 0 50 0
6 P3 -3.515 -48.671 20 40 0 10

29

8 Adding or deleting rows and columns

8.1 Adding columns: mutate()
New columns can be added with dplyr’s mutate() function. In the example below, we want to
add a column ’year’ to indicate the year in which the vegetation was sampled (’1990’) and a
column ’country’ to indicate the name of the country in which the sample was taken. We will
use magrittr’s compound assignment pipe operator %<>% to incorporate the changes into
our data frame.

spec.vec <- c("Fagus sylvatica", "Acer platanoides",
"Melica uniflora", "Hordelymus europaeus",
"Lonicera periclymenum","Lilium martagon",
"Lathyrus vernus")

veg.df <- data.frame(plot = c(rep("P1",7)),
spec = spec.vec,
layer = c("tr", "tr", "h", "h", "h","h","h"),
cov = c(60,20,5,5,5,1,5))

Display the data frame:
veg.df

plot spec layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 20
3 P1 Melica uniflora h 5
4 P1 Hordelymus europaeus h 5
5 P1 Lonicera periclymenum h 5
6 P1 Lilium martagon h 1
7 P1 Lathyrus vernus h 5

library(dplyr)
library(magrittr)

veg.df %<>% mutate(year = 1990, country = "Czech Republic")

veg.df

plot species layer cov year country
1 P1 Fagus sylvatica tr 60 1990 Czech Republic
2 P1 Acer platanoides tr 20 1990 Czech Republic
3 P1 Melica uniflora h 5 1990 Czech Republic
4 P1 Hordelymus europaeus f. elatior h 5 1990 Czech Republic
5 P1 Lonicera periclymenum h 5 1990 Czech Republic
6 P1 Lilium martagon h 1 1990 Czech Republic
7 P1 Lathyrus vernus subsp. gracilis h 5 1990 Czech Republic

30

8.2 Adding rows: bind_rows()
Two data frames can be combined with the bind_rows() function in dplyr, which is much
faster than the solution in R base. They must have identical column names and their columns
must be arranged in the same order.

In the example below, we add new rows to our existing data frame veg.df (the latter crea-
ted above, including new columns ’year’ and ’country’). Here is our second data frame:

new.df <- data.frame(plot = "P2",
spec = c("Carpinus betulus", "Acer pseudoplatanus",
"Viola reichenbachiana"),
layer = c("tr", "tr", "h"), cov = c(30,30,5),
year = 1994, country = "Austria",
stringsAsFactors = F)

new.df

plot spec layer cov year country
1 P2 Carpinus betulus tr 30 1994 Austria
2 P2 Acer pseudoplatanus tr 30 1994 Austria
3 P2 Viola reichenbachiana h 5 1994 Austria

We check first whether column names are equal and in the same order. Then, we proceed to
bind the two data frames.

cbind(colnames(veg.df), colnames(new.df))

[,1] [,2]
[1,] "plot" "plot"
[2,] "spec" "spec"
[3,] "layer" "layer"
[4,] "cov" "cov"
[5,] "year" "year"
[6,] "country" "country"

Are column names identical?

setequal(colnames(veg.df), colnames(new.df))
[1] TRUE

Are they in the same order?
identical(colnames(veg.df), colnames(new.df))
[1] TRUE

As the inspection of column names and their order yielded positive results, we will proceed to
bind the two data frames:

bind_rows(list(veg.df, new.df))

Source: local data frame [10 x 6]

plot spec layer cov year country
1 P1 Fagus sylvatica tr 60 1990 Czech Republic
2 P1 Acer platanoides tr 20 1990 Czech Republic
3 P1 Melica uniflora h 5 1990 Czech Republic

31

4 P1 Hordelymus europaeus h 5 1990 Czech Republic
5 P1 Lonicera periclymenum h 5 1990 Czech Republic
6 P1 Lilium martagon h 1 1990 Czech Republic
7 P1 Lathyrus vernus h 5 1990 Czech Republic
8 P2 Carpinus betulus tr 30 1994 Austria
9 P2 Acer pseudoplatanus tr 30 1994 Austria
10 P2 Viola reichenbachiana h 5 1994 Austria

8.3 Deleting columns
Existing column names can be deleted by assigning ’NULL’ to them. Below are two options
how to carry out the assignment. Suppose we want to remove the ’country’ column from the
veg.df data frame that we created in the two section above:

veg.df$country <- NULL

OR

library(dplyr)
veg.df %<>% mutate(country = NULL)

head(veg.df)
plot spec layer cov year

1 P1 Fagus sylvatica tr 60 1990
2 P1 Acer platanoides tr 20 1990
3 P1 Melica uniflora h 5 1990
4 P1 Hordelymus europaeus h 5 1990
5 P1 Lonicera periclymenum h 5 1990
6 P1 Lilium martagon h 1 1990

8.4 Deleting rows
See Chapter 10 ’Select rows’ on how to remove rows based on a condition.

32

9 Manipulate columns and cell entries

9.1 Rename columns: mutate(), rename()
Below are some examples of how to change column names and values. All examples are using
the compound assignment pipe (%<>%) to make immediate changes into the data frame and
to avoid creating new data frames. This is particularly convenient with large tables. However,
if you are unsure about the outcome, experiment first with the forward pipe (%>%) to create
some temporary outcome.

First, an example of how to rename a column (from ’spec’ to ’species’) in a data frame veg.df
with the function rename():

veg.df <- data.frame(
plot = c(rep("P1",7)),
spec = c("Fagus sylvatica", "Acer platanoides", "Melica uniflora",

"Hordelymus europaeus", "Lonicera periclymenum",
"Lilium martagon", "Lathyrus vernus"),

layer = c("tr", "tr", "h", "h", "h","h","h"),
cov = c(60,20,5,5,5,1,5))

veg.df

plot spec layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 20
3 P1 Melica uniflora h 5
4 P1 Hordelymus europaeus h 5
5 P1 Lonicera periclymenum h 5
6 P1 Lilium martagon h 1
7 P1 Lathyrus vernus h 5

Now, rename the column ’spec’:
library(dplyr)
library(magrittr)

veg.df %<>% rename(species = spec)

veg.df

plot species layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 20
3 P1 Melica uniflora h 5
4 P1 Hordelymus europaeus h 5
5 P1 Lonicera periclymenum h 5
6 P1 Lilium martagon h 1
7 P1 Lathyrus vernus h 5

33

9.2 Replace values: mutate(), mapvalues(), replace()
To change the names within the species column, we can use dplyr’s mutate() function in com-
bination with plyr’s mapvalues(). The latter function replaces original values in a character
or factor vector with new values.

Be aware that the dplyr and plyr packages can interfere. To avoid compatibility problems
between them, we need to make sure that we first load plyr and then, dplyr. If you have
worked with dplyr in previous operations, you should detach it from your workspace.

detach(package:dplyr)

library(plyr)
library(dplyr)
library(magrittr)

We will reuse the veg.df data frame from the previous section (as obtained after the renaming
procedure). Suppose, we want to replace some species names in our column in the following way:

Lathyrus versus -> Lathyrus versus subs. gracilis
Holdelymus europaeus -> Hordelymus europaeus f. elatior :

veg.df %<>% mutate(species = mapvalues(species,
c("Lathyrus vernus", "Hordelymus europaeus"),
c("Lathyrus vernus subsp. gracilis",
"Hordelymus europaeus f. elatior")))

veg.df

plot species layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 20
3 P1 Melica uniflora h 5
4 P1 Hordelymus europaeus f. elatior h 5
5 P1 Lonicera periclymenum h 5
6 P1 Lilium martagon h 1
7 P1 Lathyrus vernus subsp. gracilis h 5

In a similar manner, we can change numeric entries based on conditions. Let’s say, we want to
change (for some arbitrary reason) all cover values of ’5’ to ’10’:

veg.df %<>% mutate(cov = mapvalues(cov, 5, 10))

veg.df

plot species layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 20
3 P1 Melica uniflora h 10
4 P1 Hordelymus europaeus f. elatior h 10
5 P1 Lonicera periclymenum h 10
6 P1 Lilium martagon h 1
7 P1 Lathyrus vernus subsp. gracilis h 10

In addition, we can replace values based on a condition. Here is an example where we replace
all cover values < ’15’ with ’NA’, by using the replace() function in base R:

34

veg.df %<>% mutate(cov = replace(cov, cov<15, NA))

veg.df
plot species layer cov

1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 20
3 P1 Melica uniflora h NA
4 P1 Hordelymus europaeus f. elatior h NA
5 P1 Lonicera periclymenum h NA
6 P1 Lilium martagon h NA
7 P1 Lathyrus vernus subsp. gracilis h NA

9.3 Update values by group
A common problem in data preparation is that plots of a particular group lack values or have
values that need to be updated. In the example below, we have soil pH data for five countries.
For two plots from Italy, soil pH values are lacking in the initial dataset env.df and need to be
updated. We can use the data.table package to update these values, while leaving other values
in the same column intact.

Environmental dataset
env.df <- data.frame(plot = paste("P",1:10,sep = ""),

soil.ph = c(NA,NA,8.8,6.1,5.5,7.1,6.3,6.6,6.1,5.5),
region = c(rep("Italy", 3), "Australia", rep("Canada",2),
rep("Russia",2), rep("Brazil",2)),
stringsAsFactors = F)

env.df

plot soil.ph region
1 P1 NA Italy
2 P2 NA Italy
3 P3 8.8 Italy
4 P4 6.1 Australia
5 P5 5.5 Canada
6 P6 7.1 Canada
7 P7 6.3 Russia
8 P8 6.6 Russia
9 P9 6.1 Brazil
10 P10 5.5 Brazil

Dataset with updated soil.pH values for Italy

plot.it <- paste("P",1:2,sep="")

soil.ph <- c(7.1,7.3)

italy.df <- data.frame(
plot = plot.it,
soil.ph = soil.ph,
stringsAsFactors = F)

italy.df

plot soil.ph
1 P1 7.1
2 P2 7.3

35

Now, load necessary packages:

library(data.table)
library(dplyr)
library(magrittr)

Next, transform the data frame to data table and add a new column (’id’) to highlight the plots
that need a new assignment.

env.df <- setDT(as.list(env.df))
env.df %<>% mutate(id = ifelse(is.na(soil.ph & region == ’Italy’), 1,0))

italy.df <- setDT(as.list(italy.df))
italy.df%<>% mutate(id = 1,region = ’Italy’)

Set key columns that will join the two datasets and then update values for plots:

setkey(env.df, plot, region, id)
setkey(italy.df, plot, region, id)

env.df[italy.df, soil.ph := i.soil.ph, nomatch = 0]

In the resulting dataset you can see that soil pH values have been updated for the two plots
from Italy. Note that the joining operation has resulted in a new order of rows (but content has
not been altered).

env.df

plot soil.ph region id
1: P1 7.1 Italy 1
2: P10 5.5 Brazil 0
3: P2 7.3 Italy 1
4: P3 8.8 Italy 0
5: P4 6.1 Australia 0
6: P5 5.5 Canada 0
7: P6 7.1 Canada 0
8: P7 6.3 Russia 0
9: P8 6.6 Russia 0

10: P9 6.1 Brazil 0

36

10 Rearranging order of rows and columns

The order of rows can be rearranged using the dplyr’s arrange() function. Let’s create an
example:

data <- data.frame(species = c("Sp1", "Sp1", "Sp2", "Sp3","Sp1", "Sp3","Sp3",
"Sp4", "Sp1", "Sp4"),

layer = c(5,6,6,6,6,4,6,6,6,6),
plot = c(rep("P1",4), rep("P2", 4), rep("P3",2)),
perc = c(20,50,1,5,3,15,20,5,50,10),
region = c(rep("A",8), rep("B", 2)))

data

species layer plot perc region
1 Sp1 5 P1 20 A
2 Sp1 6 P1 50 A
3 Sp2 6 P1 1 A
4 Sp3 6 P1 5 A
5 Sp1 6 P2 3 A
6 Sp3 4 P2 15 A
7 Sp3 6 P2 20 A
8 Sp4 6 P2 5 A
9 Sp1 6 P3 50 B
10 Sp4 6 P3 10 B

Now, rearrange rows based on increasing cover percentages:

arrange(data, perc)

species layer plot perc region
1 Sp2 6 P1 1 A
2 Sp1 6 P2 3 A
3 Sp3 6 P1 5 A
4 Sp4 6 P2 5 A
5 Sp4 6 P3 10 B
6 Sp3 4 P2 15 A
7 Sp1 5 P1 20 A
8 Sp3 6 P2 20 A
9 Sp1 6 P1 50 A
10 Sp1 6 P3 50 B

The order of columns can be rearranged using dplyr’s select() function. Let’s say we want
to rearrange columns to match the order of: ’plot’, ’species’, ’layer’, ’perc’, ’region’. It’s impor-
tant to include all column names of the table, otherwise they are dropped.

select(data, plot, species, layer, perc, region)

plot species layer perc region
1 P1 Sp1 5 20 A
2 P1 Sp1 6 50 A
3 P1 Sp2 6 1 A
4 P1 Sp3 6 5 A
5 P2 Sp1 6 3 A

37

6 P2 Sp3 4 15 A
7 P2 Sp3 6 20 A
8 P2 Sp4 6 5 A
9 P3 Sp1 6 50 B
10 P3 Sp4 6 10 B

38

11 Select rows

Use dplyr’s slice() function to select rows or delete rows based on their number. Here is an
example:

data <- data.frame(
species = c("Sp1", "Sp1", "Sp2", "Sp3","Sp1", "Sp3", "Sp3", "Sp4", "Sp1", "Sp4"),
layer = c(5,6,6,6,6,4,6,6,6,6),
plot = c(rep("P1",4), rep("P2", 4), rep("P3",2)),
perc = c(20,50,1,5,3,15,20,5,50,10),
region = c(rep("A",8), rep("B", 2)))

data

species layer plot perc region
1 Sp1 5 P1 20 A
2 Sp1 6 P1 50 A
3 Sp2 6 P1 1 A
4 Sp3 6 P1 5 A
5 Sp1 6 P2 3 A
6 Sp3 4 P2 15 A
7 Sp3 6 P2 20 A
8 Sp4 6 P2 5 A
9 Sp1 6 P3 50 B
10 Sp4 6 P3 10 B

Choose first three rows:
slice(data, 1:3)

species layer plot perc region
1 Sp1 5 P1 20 A
2 Sp1 6 P1 50 A
3 Sp2 6 P1 1 A

Omit first three rows:
slice(data, -(1:3))

species layer plot perc region
1 Sp3 6 P1 5 A
2 Sp1 6 P2 3 A
3 Sp3 4 P2 15 A
4 Sp3 6 P2 20 A
5 Sp4 6 P2 5 A
6 Sp1 6 P3 50 B
7 Sp4 6 P3 10 B

39

Use dplyr’s filter() function to select or delete rows based on a condition.

Select plots from region "A":
filter(data, region == "A")

species layer plot perc region
1 Sp1 5 P1 20 A
2 Sp1 6 P1 50 A
3 Sp2 6 P1 1 A
4 Sp3 6 P1 5 A
5 Sp1 6 P2 3 A
6 Sp3 4 P2 15 A
7 Sp3 6 P2 20 A
8 Sp4 6 P2 5 A

Omit rows from region "B". Same result as above but different syntax:
filter(data, !region == "B")

species layer plot perc region
1 Sp1 5 P1 20 A
2 Sp1 6 P1 50 A
3 Sp2 6 P1 1 A
4 Sp3 6 P1 5 A
5 Sp1 6 P2 3 A
6 Sp3 4 P2 15 A
7 Sp3 6 P2 20 A
8 Sp4 6 P2 5 A

40

12 Select columns

To select specific columns, use dplyr’s select() function. In the example below, we reuse the
example of the previous chapter in order to select columns for species name, layer and their
cover.

data %>% select(species, layer, perc)

species layer perc
1 Sp1 5 20
2 Sp1 6 50
3 Sp2 6 1
4 Sp3 6 5
5 Sp1 6 3
6 Sp3 4 15
7 Sp3 6 20
8 Sp4 6 5
9 Sp1 6 50
10 Sp4 6 10

41

13 Combining datasets

13.1 Joining
Joining (also known as merging) combines two or more datasets based on one or more key
variable(s). In vegetation science, an example of a common joining operation is the assignment
of traits to species in a vegetation table. In this case, the vegetation and trait datasets are
combined based on a key variable for species name.

R offers several functions to join tables. Below we will use functions in the dplyr package
(Fig. 12.1). Other possibilities would be merge() in R base and in data.table, as well as the
more concise I[J] in data.table.

Datasets can be combined in different ways. In general, outer joins are performed when two da-
tasets do not completely overlap in their key variable and unmatched rows should be appended
to the resulting table (with ’NA’ listed for cells in which information could not be filled). By
comparison, inner joins are carried out to keep only rows with an overlap in the key variable
and to drop rows with non-overlap from the resulting table.

Fig. 13.1: An overview of the most common join operations

42

Below are two exemplary datasets that will be merged in four different ways:

VEGETATION DATA (Table A)

plot.vec <- plot = c(rep("P1",8), rep("P2",3)

spec.vec <- c("Fagus sylvatica", "Acer platanoides",
"Fagus sylvatica", "Melica uniflora",
"Hordelymus europaeus", "Lonicera periclymenum",
"Lilium martagon", "Lathyrus vernus",
"Fagus sylvatica", "Stellaria holostea",
"Viola reichenbachiana")

layer.vec <- c("tr","tr", "tr", "h", "h", "h","h","h","tr", "h", "h")

cov <- c(60,30,20,5,5,5,1,5,50,15,5)

veg.df <- data.frame(
plot = plot.vec,
spec = spec.vec,
layer = layer.vec,
cov = cov.vec,
stringsAsFactors = F)

veg.df

plot spec layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 30
3 P1 Fagus sylvatica tr 20
4 P1 Melica uniflora h 5
5 P1 Hordelymus europaeus h 5
6 P1 Lonicera periclymenum h 5
7 P1 Lilium martagon h 1
8 P1 Lythyrus vernus h 5
9 P2 Fagus sylvatica tr 50
10 P2 Stellaria holostea h 15
11 P2 Viola reichenbachiana h 5

TRAIT DATA (Table B)

species.vec.2 <- c("Acer platanoides", "Antennaria dioica",
"Dactylis glomerata","Dentaria bulbifera",
"Fagus sylvatica", "Hordelymus europaeus",
"Lilium martagon","Lonicera periclymenum",
"Lythyrus vernus", "Melica uniflora",
"Poa annua", "Stellaria holostea",
"Tragopogon dubius")

life_form.vec <- c("p", "c", "h", "g", "p", "h",
"g","l", "g, h", "g, h", "h, t", "c", "h")

pollination.vec <- c("i, w","i", "w", "i, self", "w", "w",
"i", "i", "i", "w","w", "i, self", "i, self")

trait.df <- data.frame(species = species.vec.2,
life_form = life_form.vec,
pollination = pollination.vec,
stringsAsFactors = F)

43

trait.df

species life_form pollination
1 Acer platanoides p i, w
2 Antennaria dioica c i
3 Dactylis glomerata h w
4 Dentaria bulbifera g i, self
5 Fagus sylvatica p w
6 Hordelymus europaeus h w
7 Lilium martagon g i
8 Lonicera periclymenum l i
9 Lythyrus vernus g, h i
10 Melica uniflora g, h w
11 Poa annua h, t w
12 Stellaria holostea c i, self
13 Tragopogon dubius h i, self

(1) The left outer join is probably the most important function for manipulating vegetation
datasets. In this case, we keep all the rows from table A and add data from B that match the
entries in the key variable. If rows in A do not have matching key values in B, then their new
values will get an ’NA’ assignment. In the example below, we use a left outer join to assign
traits to species in a vegetation table. Our key variable is species names. Note that all rows in
the vegetation table will be preserved, while only those rows in traits database will be appended
that have a matching species name.

Left outer join

library(dplyr)
new.df0 <- left_join(veg.df, trait.df,

by = c("spec" = "species"))
new.df0

plot spec layer cov life_form pollination
1 P1 Fagus sylvatica tr 60 p w
2 P1 Acer platanoides tr 30 p i, w
3 P1 Fagus sylvatica tr 20 p w
4 P1 Melica uniflora h 5 g, h w
5 P1 Hordelymus europaeus h 5 h w
6 P1 Lonicera periclymenum h 5 l i
7 P1 Lilium martagon h 1 g i
8 P1 Lythyrus vernus h 5 g, h i
9 P2 Fagus sylvatica tr 50 p w
10 P2 Stellaria holostea h 15 c i, self
11 P2 Viola reichenbachiana h 5 <NA> <NA>

Note that joining operations in dplyr do not require key variables to have the same name.

You can restrict which columns you want to join by using square-bracket indexing. However, it
is important that the key variable is included in each dataset. In the example below, we assign
only information on pollination type to the species in our vegetation dataset.

new.df1 <- left_join(veg.df, trait.df[,c("species", "pollination")],
by = c("spec" = "species"))

44

new.df1

plot spec layer cov pollination
1 P1 Fagus sylvatica tr 60 w
2 P1 Acer platanoides tr 30 i, w
3 P1 Fagus sylvatica tr 20 w
4 P1 Melica uniflora h 5 w
5 P1 Hordelymus europaeus h 5 w
6 P1 Lonicera periclymenum h 5 i
7 P1 Lilium martagon h 1 i
8 P1 Lythyrus vernus h 5 i
9 P2 Fagus sylvatica tr 50 w
10 P2 Stellaria holostea h 15 i, self
11 P2 Viola reichenbachiana h 5 <NA>

(2) In a right outer join, we keep all the rows from table B and add data from A that match
the entries in the key variable. A right join might not make so much sense for the example
above, but let’s inspect it nonetheless to understand the outcome:

Right outer join

new.df2 <- right_join(veg.df, trait.df,by = c("spec" = "species"))
new.df2

plot spec layer cov life_form pollination
1 P1 Acer platanoides tr 30 p i, w
2 <NA> Antennaria dioica <NA> NA c i
3 <NA> Dactylis glomerata <NA> NA h w
4 <NA> Dentaria bulbifera <NA> NA g i, self
5 P1 Fagus sylvatica tr 60 p w
6 P1 Fagus sylvatica tr 20 p w
7 P2 Fagus sylvatica tr 50 p w
8 P1 Hordelymus europaeus h 5 h w
9 P1 Lilium martagon h 1 g i
10 P1 Lonicera periclymenum h 5 l i
11 P1 Lythyrus vernus h 5 g, h i
12 P1 Melica uniflora h 5 g, h w
13 <NA> Poa annua <NA> NA h, t w
14 P2 Stellaria holostea h 15 c i, self
15 <NA> Tragopogon dubius <NA> NA h i, self

(3) In an outer join, all rows of table A and B are listed in the resulting dataset, even if
their values for the key variable do not match. Rows in table A and B that intersect in the key
variable (i.e. are found in both datasets) will be combined into one row, while rows that do not
intersect will be appended separately at the bottom, with ’NA’ entries in new columns.

new.df3 <- full_join(veg.df, trait.df, by = c("spec" = "species"))

new.df3

plot spec layer cov life_form pollination
1 P1 Fagus sylvatica tr 60 p w
2 P1 Acer platanoides tr 30 p i, w
3 P1 Fagus sylvatica tr 20 p w
4 P1 Melica uniflora h 5 g, h w
5 P1 Hordelymus europaeus h 5 h w
6 P1 Lonicera periclymenum h 5 l i
7 P1 Lilium martagon h 1 g i
8 P1 Lythyrus vernus h 5 g, h i

45

9 P2 Fagus sylvatica tr 50 p w
10 P2 Stellaria holostea h 15 c i, self
11 P2 Viola reichenbachiana h 5 <NA> <NA>
12 <NA> Antennaria dioica <NA> NA c i
13 <NA> Dactylis glomerata <NA> NA h w
14 <NA> Dentaria bulbifera <NA> NA g i, self
15 <NA> Poa annua <NA> NA h, t w
16 <NA> Tragopogon dubius <NA> NA h i, self

(4) An inner join combines only the rows which have matching values in the key variable; rows
with non-matching values will be dropped in each table, respectively. In our example, rows in
veg.df with ’spec’ == "Viola reichenbachiana" and rows in trait.df with ’species’ =="Tragopogon
dubius", "Poa annua", "Dactylis glomerata" and "Antennaria dioica" will be dropped because
these species do not occur in both datasets. Be careful when you use this joining operation
because you might accidentally loose rows in your table (!).

new.df4 <- inner_join(veg.df,trait.df, by = c("spec" = "species"))
new.df4

plot spec layer cov life_form pollination
1 P1 Fagus sylvatica tr 60 p w
2 P1 Acer platanoides tr 30 p i, w
3 P1 Fagus sylvatica tr 20 p w
4 P1 Melica uniflora h 5 g, h w
5 P1 Hordelymus europaeus h 5 h w
6 P1 Lonicera periclymenum h 5 l i
7 P1 Lilium martagon h 1 g i
8 P1 Lythyrus vernus h 5 g, h i
9 P2 Fagus sylvatica tr 50 p w
10 P2 Stellaria holostea h 15 c i, self

46

14 Data cleaning

14.1 Spot duplicate entries
Duplicate entries can be a data quality concern that need to be dealt with before analyzing
data. In the example below, the same species appears twice in a plot, in the same tree layer.

veg.df <- data.frame(
plot = c(rep("P1",8), rep("P2",3)),
spec = c("Fagus sylvatica", "Acer platanoides",

"Fagus sylvatica", "Melica uniflora",
"Hordelymus europaeus", "Lonicera periclymenum",
"Lilium martagon", "Lythyrus vernus",
"Fagus sylvatica", "Stellaria holostea",
"Dentaria bulbifera"),

layer = c("tr","tr", "tr", "h", "h", "h","h","h","tr", "h", "h"),
cov = c(60,30,20,5,5,5,1,5,50,15,5))

veg.df

plot spec layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Acer platanoides tr 30
3 P1 Fagus sylvatica tr 20
4 P1 Melica uniflora h 5
5 P1 Hordelymus europaeus h 5
6 P1 Lonicera periclymenum h 5
7 P1 Lilium martagon h 1
8 P1 Lythyrus vernus h 5
9 P2 Fagus sylvatica tr 50
10 P2 Stellaria holostea h 15
11 P2 Dentaria bulbifera h 5

Using the example above, we can spot duplicate entries within plots by specifying the grouping
structure using dplyr’s by_group(). In our case, the grouping structure is the combination
of ’plot’, ’spec’ and ’layer’. Then, we use dplyr’s filter() to extract combinations that occur
more than once.

Show duplicate combinations

veg.df %>%
group_by(plot, spec, layer) %>%
filter(n()>1)

plot spec layer cov
1 P1 Fagus sylvatica tr 60
2 P1 Fagus sylvatica tr 20

There is no standard way of how to deal with duplicate plot x species x layer entries. The most
rigorous options is to remove plots from your dataset with the filter() function. In this case, it
might be helpful to get a vector of plot numbers in which duplicate entries were found:

47

veg.df %>%
group_by(plot, spec, layer) %>%
filter(n()>1) %>%
as.vector(unique(extract(plot)))

[1] "P1"

You could also remove one of the two rows by using filter() or you can merge their cover values
with veggie’s merge_cov() function (Chapter 14).

14.2 Spell-checking taxon names
The correct spelling of taxon names is an important prerequisite for many data processing steps,
such as search and replace functions and join operations. When dealing with small vegetation
datasets, taxon names can be checked manually for mistakes. However, with large vegetation
datasets, this task becomes inefficient, non-reproducible and prone to errors. In this section,
you learn how to use R tools to spell-check taxon names.

14.2.1 General spelling mistakes
There are some R functions that can deal with general spelling mistakes, like redundant white
spaces and invisible white characters. Below, we use (1) the stringr package and (2) the gsub()
function in R base in combination with regular expressions (see chapter 6.2) to spot general
mistakes in taxon names.

Imagine we have the following string of taxon names that includes redundant spaces before,
in the middle, and at the end of taxon names (see entries for Betula pendula, Vaccinium myr-
tillus, and Cladonia rangiferina).

species <-c("Pinus sylvestris",
" Betula pendula",
"Vaccinium myrtillus",
"Deschampsia flexuosa",
"Luzula pilosa",
"Dicranum scoparium",
"Cladonia rangiferina ")

White spaces at the beginning and end of taxon names can be deleted with stringer’s str_trim()
function:

library(stringr)

species2 <- str_trim(species)

species2

[1] "Pinus sylvestris" "Betula pendula"
[3] "Vaccinium myrtillus" "Deschampsia flexuosa"
[5] "Luzula pilosa" "Dicranum scoparium"
[7] "Cladonia rangiferina"

48

The gsub() function can substitute white spaces across the entire string. It consists of three
components, the regular expression for matching (here: match two or more spaces; "\\s{2,}"),
a specification how the matched expression should be replaced (by a white space (" "), in our
case), and the name of the vector for which the operation should be carried out (’species2’).

gsub("\\s{2,}", " ", species2)

[1] "Pinus sylvestris" "Betula pendula" "Vaccinium myrtillus"
[4] "Deschampsia flexuosa" "Luzula pilosa" "Dicranum scoparium"
[7] "Cladonia rangiferina"

Alternatively, we can pipe all above functions into a single line with the magrittr package.
The third element within gsub() should include a dot instead of the vector name:

species %>% str_trim %>% gsub("\\s{2,}", " ", .)

[1] "Pinus sylvestris" "Betula pendula" "Vaccinium myrtillus"
[4] "Deschampsia flexuosa" "Luzula pilosa" "Dicranum scoparium"
[7] "Cladonia rangiferina"

In some rare cases, taxon names can include invisible whitespace characters, like a middle dot
("·") that is by default neither displayed in the R console, file nor in the editor. Two taxon
names that differ in having a middle dot or regular space (and are otherwise identical) will not
be recognized as identical by R.

By definition, it is impossible to create a reproducible and visible object, here. But in ge-
neral, you can match invisible whitespaces with the regular expression "\\p{Zs}"and substitute
them by normal whitespaces with the gsub() function. The argument ’perl=TRUE’ specifies
that Perl-style regular expressions should be used:

gsub("\\p{Zs}", " ", species, perl=TRUE)]

14.2.2 Spell-checking with reference lists
Many spelling mistakes in taxon names can only be detected by using a reference list that inclu-
des correctly spelt names. R offers three packages (tpl, Taxonstand, taxize) that reference
global taxonomic databases and match names via fuzzy algorithms.

The choice for one of these three package depends on the taxonomic breadth of your data-
base. Both Taxonstand and tpl rely on The Plant List and thus, can only spell-check vascular
plant and bryophyte taxon names. Taxonstand is more limited because it references The Plant
List on the web, which only allows to spell-check species epithets (and not genus names). By
contrast, tpl downloads the entire The Plant List database on your computer (via the tpldata
package). This gives tpl the freedom to also spell-check genus names.

However, the most versatile tool is the gnr_resolve() function in the taxize package. It
calls the Global Names Resolver (GNR), which employs a modified taxamatch algorithm (Rees
2014) and references multiple global taxonomic databases. Consequently, it can detect spel-
ling mistakes in names of vascular plants, bryophytes, fungi, lichens, and algae, at different
taxonomic levels (family, genus, species, subspecies, variety). In the following, you can see how
gnr_resolve() works and how you can incorporate its results through a semi-automatic ap-
proach.

49

http://www.theplantlist.org/
http://resolver.globalnames.biodinfo.org/

I created some arbitrary data (from temperate vegetation in Europe). Hashtags indicate spelling
mistakes.

library(taxize)
library(dplyr)
library(magrittr)

veg.df <-data.frame(taxa = c(
"Scorsonera villosa", # correct spelling: Scorzonera villosa
"Abietinela", # Abietinella
"Acer tatarica", # Acer tataricum
"Stipa johannis", # Stipa joannis
"Anthriscus nitidum", # Anthriscus nitida
"Xanthopaemelia", # Xanthoparmelia
"Bolettus", # Boletus
"Fagus sylvatica",
"Ompalina", # Omphalina
"Pooaceae", # Poaceae
NA),
abund = c(12, 5, 20, 1, 1, 1, 10, 15, 10,5,2),
plot=c(99,12,100,15,99,70,88,201,9,49,52))

You can use 94 different sources to match your name against. In the next line we can inspect
the full list of available sources. (Uncomment hashtag to see full list):

gnr_datasources()

Next, specify the reference databases you want to use. If you don’t indicate databases, GNR
will match your names against all sources.

src <- c("EOL", "The International Plant Names Index",
"Index Fungorum", "ITIS", "Catalogue of Life",
"Tropicos - Missouri Botanical Garden")

Show specified sources:

subset(gnr_datasources(), title %in% src)
id title

1 1 Catalogue of Life
3 3 ITIS
5 5 Index Fungorum
12 12 EOL
83 165 Tropicos - Missouri Botanical Garden
85 167 The International Plant Names Index

Submit request to the Global Names Resolver. You need an internet connection for this step.
The important arguments are:
- stripauthority: author names should be excluded in display
- with_canonical_ranks: include ranks (e.g. “subsp.”)

result.long <- veg.df$taxa %>%
gnr_resolve(data_source_ids = c(1,5,12,165,167),

with_canonical_ranks=T)

50

Inspect full results table. The columns indicate the following:
- submitted_name: original/supplied taxon names
- matched_name2: taxon names matched by GNR
- score: matching score (with 1.0 being the best score)
- data_source_title: name of reference database

head(result.long)

submitted_name data_source_title score matched_name2
6 Abietinela Catalogue of Life 0.50 Abietinella
7 Abietinela EOL 0.50 Abietinella
12 Abietinela Tropicos - Missouri Botanical Garden 0.50 Abietinella
13 Abietinela Tropicos - Missouri Botanical Garden 0.50 Abietineae
14 Acer tatarica Catalogue of Life 0.75 Acer tataricum
15 Acer tatarica EOL 0.75 Acer tataricum

I use a ‘semi-automatic’ approach for cleaning spelling mistakes in taxon names, which has
three advantages:

1) I control what I want to implement. This is particularly important when you think that
algorithms can suggest different names with same score but only one matching result makes
sense. For example, EOL and Tropicos suggested that the name ‘Pooaceae’ could be matched
either to “Poaceae” or “Podoceae”. The latter name is a synonym of Anacardiaceae (according
to USDA ARS GRIN Taxonomy), family which is mostly distributed in the tropics and subtro-
pics. Given that I am working with data from temperate Europe, ‘Poaceae’ is my choice no. 1,
here.

2) In case GNR matching results are not suitable or matching failed, I can specify and im-
plement alternative names (or use placeholders).

3) I make sure that my observations are not multiplied. With a fully automatic (‘blind’) imple-
mentation, I run the risk that the number of observations and the number of taxon names in
my database is multiplied. For example, joining by “Pooaceae” will create two observation for
this taxon names, one for “Podoceae” and one for “Poaceae”. In other words, my observation
would be forked into two observations.

Next, export your results to a .txt file (modify content in quotes to match your path and
nsert name of object to be exported).

write.table(result.short,
"result.short.txt",
sep="\t", row.names = F, quote = F)

Insert three new columns (change names as you like) and insert text:
‘implement’ - should the name suggested by GNR be used? (TRUE/FALSE)?
‘alternative’ - write an alternative name here
‘dupl’ - Is this entry a duplicate (TRUE/FALSE)?

Save the file under a new name (I created ’result.short.COMMENTS.txt’) and import it into
R:

corr.df <- read.table("result.short.COMMENTS.txt",
sep="\t", header=T, stringsAsFactors = F)

51

It’s important to discard duplicates in the imported table (highlighted in the new ‘dupl’ column)
so that joining does not result in a multiplication of rows.

corr.df %<>% filter(!dupl ==T)

Now, join with original dataset and implement changes. The function below will implement
changes through three ifelse() statements:

taxa.df.2 <- veg.df %>%
left_join(corr.df, by=c("taxa" ="submitted_name")) %>%
mutate(new.taxon = ifelse(implement == T, matched_name2,
ifelse(implement == F & is.na(alternative)==T, taxa,
ifelse(implement == F & is.na(alternative)==F, alternative))))

A warning might pop up (as above). It just tells you that the key columns are of different class
(character vs. factor). No reason to be worried.

Now, check your results and create a new object. If you work with a very large object, you
can directly implement changes in your dataframe by using the compound assignment pipe
operator %<>%.

veg.df.2 <- veg.df %>%
left_join(corr.df, by=c("taxa" ="submitted_name")) %>%
mutate(new.taxon = ifelse(implement == T, matched_name2,
ifelse(implement == F & is.na(alternative)==T, taxa,
ifelse(implement == F & is.na(alternative)==F, alternative)))) %>%
Discard columns
select(-matched_name2, -score, -implement, -alternative, - dupl, -taxa) %>%
Rename your column storing the new taxon names
rename(taxon = new.taxon) %>%
Sort column in the original order (optional)
select(taxon, abund,plot)

And here is our new data frame with correctly spelt taxon names:

veg.df.2

taxon abund plot
1 Scorzonera villosa 12 99
2 Abietinella 5 12
3 Acer tataricum 20 100
4 Stipa joannis 1 15
5 Anthriscus nitida 1 99
6 Xanthoparmelia 1 70
7 Boletus 10 88
8 Fagus sylvatica 15 201
9 Omphalina 10 9
10 Poaceae 5 49
11 <NA> 2 52

An important topic that is not covered in this manual is taxonomic standardization. There
are R packages that can retrieves synonyms from taxonomic databases, including the already
mentioned tpl, Taxonstand and taxize packages, as well as the packages,taxizesoap pac-
kage which references the Euro+Med PlantBase. However, incorporating their results into
vegetation data is tricky and requires taxonomic knowledge. I am currently trying to figure out
a semi-automatic workflow that won’t mess up the data.

52

https://github.com/ropensci/taxizesoap
http://ww2.bgbm.org/EuroPlusMed/query.asp

References
Rees, T. 2014. Taxamatch, an Algorithm for Near (‘Fuzzy’) matching of scientific names in
taxonomic databases. PloS One: 0107510.

53

15 Merging cover values

In addition to species x plot data, vegetation tables can also include information for the layer
in which a species occurs in. Below is an example with the data frame veg.df :

plot.ID.vec <- paste("P",c(1,1,1,1,1, 2,2,2,2,2,2,2),sep = "")

species.name.vec <- c(rep("Spec1", 3),"Spec2",
"Spec3",rep("Spec1", 2) "Spec5",
"Spec4", rep("Spec6",3))

layer.vec <- c(6,5,4,6,6, 4,5,2,3,4,5,5)

abund.vec <- c(0.4,0.2,0.2,0.1,0.8,0.6,0.4,0.4,0.7,0.1,0.6,0.2)

region.vec <- region=c(rep("Region1",5), rep("Region2",7))

veg.df <- data.frame(plot.ID = plot.ID.vec,
species.name = spec.name.vec,
layer = layer.vec,
abund = abund.vec,
region = region.vec)

veg.df

plot.ID species.name layer abund region
1 P1 Spec1 6 0.4 Region1
2 P1 Spec1 5 0.2 Region1
3 P1 Spec1 4 0.2 Region1
4 P1 Spec2 6 0.1 Region1
5 P1 Spec3 6 0.8 Region1
6 P2 Spec1 4 0.6 Region2
7 P2 Spec1 5 0.4 Region2
8 P2 Spec5 2 0.4 Region2
9 P2 Spec4 3 0.7 Region2
10 P2 Spec6 4 0.1 Region2
11 P2 Spec6 5 0.6 Region2
12 P2 Spec6 5 0.2 Region2

We can merge cover values for species across its layers in a plot. This operation can be carried
out under the assumption of independent overlap among layers or under the assumption of no
overlap (Tichy & Holt 2006, Fischer 2014). In the latter case, the resulting cover is the sum of
the covers by each layer.

In the following example, we use veggie’s merge_cov() function to merge cover for iden-
tical species within a plot, irrespective of the layer they occur in. By default, the function
assumes independent overlap among layers:

library(veggie)

merge_cov(veg.df, cover = "abund", plot = "plot.ID", taxacol = "species.name",
layercol = "layer")

Source: local data frame [7 x 5]
Groups: plot.ID, species.name, layer.new, new.cov

54

plot.ID species.name region layer.new new.cov
1 P1 Spec1 Region1 new_layer_veggie 0.616
2 P1 Spec2 Region1 6 0.100
3 P1 Spec3 Region1 6 0.800
4 P2 Spec1 Region2 new_layer_veggie 0.760
5 P2 Spec5 Region2 2 0.400
6 P2 Spec4 Region2 3 0.700
7 P2 Spec6 Region2 new_layer_veggie 0.712

Cover values will be merged under the assumption of no overlap, when we specify ’method’ =
sum:

merge_cov(veg.df, cover = "abund", plot = "plot.ID", taxacol = "species.name",
layercol = "layer", method = "sum")

Source: local data frame [7 x 5]
Groups: plot.ID, species.name, layer.new, new.cov

plot.ID species.name region layer.new new.cov
1 P1 Spec1 Region1 new_layer_veggie 0.8
2 P1 Spec2 Region1 6 0.1
3 P1 Spec3 Region1 6 0.8
4 P2 Spec1 Region2 new_layer_veggie 1.0
5 P2 Spec5 Region2 2 0.4
6 P2 Spec4 Region2 3 0.7
7 P2 Spec6 Region2 new_layer_veggie 0.9

The function can also merge cover values for specific layers if you supply the target layers in
the argument ’layer names’, e.g. for layers "4"and "5":

merge_cov(veg.df, plot = "plot.ID", taxacol = "species.name",
layercol = "layer", layernames = c("4","5"), cover = "abund")

Source: local data frame [8 x 5]
Groups: plot.ID, species.name, layer.new, new.cov

plot.ID species.name region layer.new new.cov
1 P1 Spec1 Region1 6 0.400
2 P1 Spec1 Region1 new_layer_veggie 0.360
3 P1 Spec2 Region1 6 0.100
4 P1 Spec3 Region1 6 0.800
5 P2 Spec1 Region2 new_layer_veggie 0.760
6 P2 Spec5 Region2 2 0.400
7 P2 Spec4 Region2 3 0.700
8 P2 Spec6 Region2 new_layer_veggie 0.712

You can customize the output even further, by narrowing the operation to specific species and
layers. In the example below, we want to merge cover values only across layer "4"and "5"for
"Spec1"within plots:

merge_cov(veg.df, plot = "plot.ID", taxacol = "species.name",taxonname = "Spec1",
llayercol = "layer", layernames = c("4", "5"), cover = "abund")

Source: local data frame [10 x 5]

plot.ID species.name region layer.new new.cov
1 P1 Spec1 Region1 6 0.40
2 P1 Spec1 Region1 new_layer_veggie 0.36

55

3 P1 Spec2 Region1 6 0.10
4 P1 Spec3 Region1 6 0.80
5 P2 Spec1 Region2 new_layer_veggie 0.76
6 P2 Spec5 Region2 2 0.40
7 P2 Spec4 Region2 3 0.70
8 P2 Spec6 Region2 4 0.10
9 P2 Spec6 Region2 5 0.60
10 P2 Spec6 Region2 5 0.20

References

Fischer, H.S. 2014. On the combination of species cover values from different vegetation la-
yers. Applied Vegetation Science 18: 169-170.

Tichý, L. & Holt, J. 2006. JUICE program for management, analysis and classification of eco-
logical data. Program manual. Masaryk University Brno, Czech Republic.

56

16 Data summary per group

A common step in the preparation of vegetation tables are summaries across groups. Exam-
ples include the calculation of number of plots per region, number of species per plot, mean
indicator values per vegetation type. In dplyr, summaries per group are carried out by first
specifying the grouping structure with group_by() and then, calculating a function for groups
with summarise(). Both functions can be piped together.

In contrast to the mutate() function, which does not change the number of rows in the table,
summarise() collapses the table, so that each row corresponds a group.

The next two sections include examples for summary-by-group operations for vegetation data.
They are based on the following table, with ’species’: species name, ’layer’: vegetation layer,
plot: plot ID, perc: abundance in percentage, region: region, in which the plot was sampled.

data <- data.frame(species = c("Sp1", "Sp1", "Sp2", "Sp3",
"Sp1", "Sp3", "Sp3", "Sp4",
"Sp1", "Sp4"),

layer = c(5,6,6,6,
6,4,6,6,
6,6),

plot = c(rep("P1",4), rep("P2", 4), rep("P3",2)),
perc = c(20,50,1,5,

3,15,20,5,
50,10),

region = c(rep("A",8), rep("B", 2)))
data

species layer plot perc region
1 Sp1 5 P1 20 A
2 Sp1 6 P1 50 A
3 Sp2 6 P1 1 A
4 Sp3 6 P1 5 A
5 Sp1 6 P2 3 A
6 Sp3 4 P2 15 A
7 Sp3 6 P2 20 A
8 Sp4 6 P2 5 A
9 Sp1 6 P3 50 B
10 Sp4 6 P3 10 B

16.1 Number of species per plot
The n_distinct() wrapper counts the number of unique species names per plot (not their
replications!). Proving a name for the new column is not obligatory but recommend. This can
save some trouble later, if we want to reuse the new column.

library(dplyr)

data %>%
specify the grouping structure
group_by(plot) %>%

57

carry out the summary function and name new column
summarise(nr.spec = n_distinct(species))

In our next example, we want to obtain mean numbers of species across two nested grouping
variables: plot and region.

First, we create a grouping that includes plot x region combinations, with plots nested in
regions. Then, we calculate again the number of species per plots and name the new column.
Next, we group again, this time, at the higher level of region Finally, we calculate the mean of
our previously generated variable ’nr’.

data %>%
group_by(plot, region) %>%
summarise(nr = n_distinct(species))%>%
group_by(region)%>%
summarise(mean.sp.nr = mean(nr))

58

	Introduction
	Notes on how to use this manual
	Background
	Packages
	Installation of packages
	Loading and detaching packages

	General tools
	Time your R-processes
	Manage your R-memory
	Pipe functions
	Aliases

	Read data into R's workspace
	Overview
	Read delimited files
	Encoding

	Write data to file
	Data inspection
	String operations
	Paste, split and check encoding
	Regular expressions

	Reshaping tables: Wide <–>Long
	Wide format
	Long format
	Wide ->Long: gather()
	Long ->Wide: spread()

	Adding or deleting rows and columns
	Adding columns: mutate()
	Adding rows: bind_rows()
	Deleting columns
	Deleting rows

	Manipulate columns and cell entries
	Rename columns: mutate(), rename()
	Replace values: mutate(), mapvalues(), replace()
	Update values by group

	Rearranging order of rows and columns
	Select rows
	Select columns
	Combining datasets
	Joining

	Data cleaning
	Spot duplicate entries
	Spell-checking taxon names
	General spelling mistakes
	Spell-checking with reference lists

	Merging cover values
	Data summary per group
	Number of species per plot

